Incorporating Human Body Mass in Standards of Helmet Impact Protection against Traumatic Brain Injury
نویسنده
چکیده
Impact induced traumatic brain injury (ITBI) describes brain injury from head impact not necessarily accompanied by skull fracture. For sufficiently abrupt head impact decelerations, ITBI results from brain tissue stress incurred as the brain crashes into the inside of the skull wall, displacing the surrounding cerebral spinal fluid (CSF). Proper helmet cushioning can damp the impact force and reduce ITBI. But force is mass times acceleration and current helmet blunt impact standards are based only on acceleration thresholds. Here I show how this implies that present standards grossly overestimate the minimum acceleration onset for ITBI by implicitly assuming that the brain is mechanically decoupled from the body. I quantify how an arbitrary orientation of the body with respect to impact direction increases the effective mass that should be used in calculating the required damping force and injury threshold accelerations. I suggest a practical method to incorporate the body mass and impact angle into ITBI helmet standards and point out directions for further work.
منابع مشابه
Improving TBI Protection Measures and Standards for Combat Helmets
1.ABSTRACT How well do current combat helmets protect against Traumatic Brain Injury? To answer this question it is necessary to evaluate both the measures and standards of protection. We define measure as a physical test that the helmet must be subject to and the standard as the quantitative threshold of performance in this test that the helmet must satisfy to be acceptable. We find that both ...
متن کاملCombat Helmets and Blast Traumatic Brain Injury
Background: The conflicts in Iraq and Afghanistan and the prominence of traumatic brain injury (TBI), mostly from improvised explosive devices, have focused attention on the effectiveness of combat helmets. Purpose: This paper examines the importance of TBI, the role and history of the development of combat helmets, current helmet designs and effectiveness, helmet design methodology, helmet sen...
متن کاملBallistic helmets – Their design, materials, and performance against traumatic brain injury
Protecting a soldier’s head from injury is critical to function and survivability. Traditionally, combat helmets have been utilized to provide protection against shrapnel and ballistic threats, which have reduced head injuries and fatalities. However, home-made bombs or improvised explosive devices (IEDs) have been increasingly used in theatre of operations since the Iraq and Afghanistan confli...
متن کاملFinite element modeling of human brain response to football helmet impacts.
The football helmet is used to help mitigate the occurrence of impact-related traumatic (TBI) and minor traumatic brain injuries (mTBI) in the game of American football. While the current helmet design methodology may be adequate for reducing linear acceleration of the head and minimizing TBI, it however has had less effect in minimizing mTBI. The objectives of this study are (a) to develop and...
متن کاملBrain Response to Primary Blast Wave Using Validated Finite Element Models of Human Head and Advanced Combat Helmet
Blast-induced traumatic brain injury has emerged as a "signature injury" in combat casualty care. Present combat helmets are designed primarily to protect against ballistic and blunt impacts, but the current issue with helmets is protection concerning blasts. In order to delineate the blast wave attenuating capability of the Advanced Combat Helmet (ACH), a finite element (FE) study was undertak...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009